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A b s t r a c t  Some approaches to molecular marker-assist- 
ed linkage detection for a dominant  disease-resistance 
trait based on a segregating F2 population are discussed. 
Analysis of two-point linkage is carried out by the 
traditional measure of maximum lod score. It depends 
on (1) the maximum-likelihood estimate of the recom- 
bination fraction between the marker and the disease- 
resistance gene locus, (2) the observed absolute frequen- 
cies, and (3) the unknown number of tested individuals. 
If one replaces the absolute frequencies by expressions 
depending on the unknown sample size and the maxi- 
mum-likelihood estimate of recombination value, the 
conventional rule for significant linkage (maximum lod 
score exceeds a given linkage threshold) can be resolved 
for the sample size. For each sub-population used for 
linkage analysis [susceptible (=  recessive) individuals, 
resistant (=  dominant) individuals, complete F2] this 
approach gives a lower bound for the necessary number 
of individuals required for the detection of significant 
two-point linkage by the lod-score method. 

K e y  w o r d s  Linkage analysis �9 Disease resistance �9 

Molecular markers �9 Lod-score method �9 
Sample size 

Introduction 

Molecular markers, such as restriction fragment length 
polymorphisms (RFLPs), could provide an abundant 
supply of co-dominant genetic markers. Because of their 
almost unlimited number and their independence on 
environmental factors, as well as on dominance and 
epistatic effects, they are highly superior to protein 
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(isozyme) markers and to morphological markers. 
RFLP  linkage maps, therefore, have been constructed 
for many economically important organisms such as 
tomato, potato, maize, rice, lettuce, cabbage, sugar beet, 
barley, soybean and lentil (see, for example: Helentjaris 
1987; Landry et al. 1987; Coe et al. 1988; Mc Couch et al. 
1988; Tanksley 1988; Gebhardt et al. 1989, 1991; Havey 
and Muehlbauer 1989; Slocum et al. 1990; Graner et al. 
1991; Tingey et al. 1991; Barzen et al. 1992; Pillen et al. 
1992, 1993). 

In the field of practical plant breeding, selection for a 
dominant  disease-resistance trait is a common breeding 
objective; for example, nematode resistance in sugar 
beet (Jung et al. 1992). Application of RFLP-assisted 
selection schemes can greatly accelerate the breeding 
process. 

RFLP linkage maps of crop species are often con- 
structed with segregating populations, i.e., F 2 popula- 
tions or backcrosses. In this paper, some comments on 
molecular marker-assisted linkage detection for a domi- 
nant disease-resistance trait based on a segregating F 2 
population will be presented. The investigations, how- 
ever, will be restricted to the analysis of two-point 
linkage by the traditional measure of maximum LOD 
SCORE (Ott 1991). 

The problem 

Assume a diploid segregating F 2 population co-segregating for 
RFLP markers and disease-resistance genes, as is the case, for 
example, for nematode resistance in sugar beet (Jung et aI. 1992; 
Pillen et al. 1992). The two alleles at the resistance-gene locus are 
denoted by A (= resistant) and a (=  susceptible) with A dominant 
over a. The marker alleles with co-dominant expression are B1 and B 2 
with a recombination value R between the marker and the disease- 
resistance gene locus. Selfing or intercrossing the F 1 generation 
AaBIB a of an initial cross of homozygous parents creates a segregat- 
ing F 2 population. Linkage analysis is based on this F2. Three 
sub-populations of the F 2 can then be used for linkage analysis: 

I. Linkage analysis based on susceptible (=  recessive) individuals. 
II. Linkage analysis based on resistant (=  dominant) individuals. 
III. Linkage analysis based on the complete F 2. 
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In ti~e ,'o~[owing investigations he recombma~ior~ value is as- 
sumed to be equal in both sexes. The doable heterozygote AaB~B 2 
~roduces the gametes /~_B 1 aB~ AB e. and aB2 with frequencies 
g(1 - R ) ,  vR. 5R and 7(1 -R) ,  respecavelv. ~he composmon of the 
segregating F2 is given in Table 1. 

In this paper, all investigations are restricted to the analysis of the 
most simple situation of two-point linkage by the traditional ap- 
proach of maximum LOD SCORE. This is defined as the logarithm 
to base 10 of the ratio of the likelihoods when the loci are at their 
maximum-likelihood recombination fraction and when the loci are 
taken to be unlinked. 
We denote 
N = number of tested individuals, 
~ = number of phenotypically distinct classes, 
.~ = expected relative frequency of class i, i = 1, 2,. . . ,  k, 
z~ = observed absolute frequency of class i, i = 1, 2 ... .  k, 
L(R) = likelihood function dependent on the recombination fraction 
R, Z(R) = LOD SCORE for recombination value R which is defined 
as  

s~(~) 
z(a) =_ ,og , - - -~  . (l) 

U~(o ~o)J 
where log denotes the logarithm to base 10. 

The maximum-likelihood estimate I~ of the recombination frac- 
tion R is that value for which the LOD SCORE is maximized. A 
conventionai rule is to conclude that autosomai loci are linked 
whenever the maximum LOD SCORE exceeds 3 (Ott 1991). In the 
following numericai calculations, however, ~he linkage threshol8s 4.0 
and 2.0 will be additionally applied. 

The LOD SCORE, of course, depends on the number N of tested 
individuals. The conditiop~ for significant linkage 

Z(/~)=iog!- L(R) ~ >  f linkage 
_ ( )<~thresh~ ? (2) EL(0.50)_] 

can be resotved for N. This approach, therefore, provides an inequal- 
ity (=lower bound) for the necessary number N of individuals 
required for a detection of significant two-point linkage by the 
LOD-SCORE method. 

Theory, ~esu!ts and discussion 

For a sub=population of susceptible individuals 

The expected relative frequencies~, i = 1, 2 . . . .  ,k, of the 
three phenotypically distinct classes ( k = 3 )  are 

1"able ~ The composition of a segregating F~ by combining maie and 
female gametes 

Male gametes (with frequencies) 

~ ,~ AB~ AB 2 aB~ aB2 
= ~ �89 - -R) -1R2 5R1 �89 R) 

,.= AB~ AAB1B 1 AAB1B 2 AaB1B ~ AaB1B2 
..~ �89 -1(1 -- R)a �88 - R )  �88 --R) 1(1 --  R)2 

AB2 AAB1B 2 A A B 2 B ~  A a B 1 B 2  AaB2B~ 
1 2R_ ~ R  1R(1  _ ~ ) 1 ~ - �88 2 �88 --R) 

~ aB~ AaB~B~ A a B ~ B 2  a a B ~ B 1  aaB~B2 
~ ~R~ �88 - R) �88 ~ �88 ~ �88 

aB; AaB1B 2 AaB2B 2 a a B 1 B ~  aaB2B2 
1 1 1 1 2 ( - R )  a ( -R ) ;  �88 R) �88 �88 2 

{Table ~): 

J l = Re (for aa;3>.,31) 

j2 = 2R (1 - R) (for an21 82) and 

j ;  = (t - R) 2 (for aaB2B2). 

The observed absolr~te frequencies are Zl, z 2 and 
z3, respectively, with z, + z 2 + z 3 = N = number of test- 
ed susceptible individuals. The likelihood function L(R) 
is 

(3) 

With L(0.50)=2 ~-a'v one obtains for the LOD 
SCORE: 

LOD SCORE = Z(R) 

= Jog ~R2~+z~~ ~R)~+ 2z~'22z'r (4) 

The maximum likelihood estimate R is found by setting 
to zero the first derivative of the LOD SCORE and 
verifying that this maximizes the LOD SCORE: 

~ = 2zl + z2 
2(z~ + z~ + z3) (5) 

By (5) one obtains: 

2z 1 + z 2 - 2Nff, and z 2 + 2z3 = 2N(1 -- R). (6) 

The value Z(fi0 of the LOD SCORE for R = R depends 
on/~, z 1 , z 2, z 3, and N. If we replace the frequencies z > z 2 
and z 3 by the expressions (6) depending o n N  and R, the 
eondi'don for significant linkage Z(R) >_ {linkage 
~hreshold} can be resolved for N: 

*~ / linkage )> 
g (N, 2~) = 2N log i_2R R (1 -- ~.R); ~? >_ ( threshold j (7) 

This inequa]ity (7) can be interpreted by the follo- 
wing point of view: if we assume an existing linkage 
with a 'true' recombination fraction R, and provided 
that it is well estimated by the maximum likelihood 
estimate/~, then (7) gives a lower bound for the neces- 
sary number  N of individuals required for the detection 
of significant two-point linkage by the LOD-SCORE 
method. 

Some numerical values for these lower bounds are 
presented in Table 2; N decreases, of course, with in- 
creasing deviations from R = 0.50 (Table 2). 

For a sub-population of resistant individuals 

The expected relative frequencies s i = 1, 2,.~.,~, of the 
three phenotypically distinct classes ( k = 3 )  are 



Table 2 Lower bounds oi" 
necessary sample sizes required 
for linkage detection by the 
LOD-SCORE method 

Sub-population 
~inkage threshold 

0.05 
O.lO 
0.15 

g 0.20 
~ 0.25 
,~ 0.30 

0.35 
o 0.40 
Pa 0.45 

843 

Susceptible 

2.0 3.0 4.0 

Resistant Susceptible + resistaa~t 

2.0 3.0 4.0 2.0 3.0 4,0 

5 7 10 
7 10 13 
9 13 18 

12 18 24 
18 27 36 
28 42 56 
51 76 101 

115 172 229 
460 690 920 

26 39 52 13 19 25 
38 57 76 17 26 34 
56 84 112 24 36 47 
85 128 170 34 5l 68 

134 201 268 51 76 101 
226 338 451 82 123 164 
426 638 851 149 223 298 

1000 1500 2000 341 511 682 
4110 6165 8220 1376 2064 2752 

(Table i): 

L = (1 -R2)/3 (for A-B,3,) 

)2 = 2(1 + R 2 - R)/3 (for A'BIB2) and 

23 = ( 2 R -  R2)/3 (for A'B2B2) 

where ':he dot  nota t ion indicates that the respective 
allele may  be the dominant  one or the recessive one. 

The observed absolute frequencies are again zz, z 2 
and z> respectively, with zl + z 2 + z3 = N = number  of 
tested resistant individuals. The likelihood function 
L(R) is 

L(R) = (1 -R2)Z~(1 + R 2 -R)Z:(2R-R2)Z~.2z~.3-N. (8) 

With L ( 0 . 5 0 ) = 2  z~-2N o n e  obtains for the L O D  
SCORE: 

Z(R) = log [(1 - R2) z~ (1 + R 2 - R) z~ (2R - R2) z~ (~)~'f]. (9) 

The maximum likelihood estimate ,~ is found by 
setting to zero the first derivative of the L O D  SCORE 
and verifying that this maximizes the L O D  SCORE. 
One then obtains the condition: 

2Rz 1 z2(2/~- ! ) z3 (2 -  2R ) 
- ~ a  - 1 + ~ _ ~ +  2 ~ - ~ e  �9 

(lo) 

To apply a similar approach as in the previous 
analysis for the sub-populat ion of susceptible individ- 
uals, the condit ion for significant linkage Z(/~) > {link- 
age thre@old} must be t ransformed into an inequality 
for N. Z(R) depends on R, Zl, z2, z3, and N. If we are able 
to replace the frequencies zl, z 2, and z 3 by expressions 
depending on R and N, then the condit ion Z(R) >_ {link- 
age threshold} can be resolved for N. But, for the 
determinat ion of the three 'unknowns' ,  z~, z2, and z3, 
there are only two equations available: extreme condi- 
tion (10) and z 1 + z2 + z3 = N. To obtain an addit ional  
equation, we replace one of the three absolute frequen- 
cies z~ or z2 or z 3 by its theoretical frequency N f  

calculated at R = _~ (Replacement oiz~ or z2 or z 3 leads 
to the same results). By this procedure,  the lower bounds 
of necessary numbers of tested plants can be easily 
calculated and one obtains: 

3 
N ~ 4 

F(N, = 3-1~ 

�9 ( 2 R - R )  - "~j> C linkage "~ 
[ t h r e s h o l d j  

(11) 

Some numerical results are presented in Table 2. 

For  the complete popula t ion of susceptible 
and resistant individuals 

The expected relative frequenciesf~, i = 1, 2, . . .  ,k, of the 
six phenotypical ly distinct classes (k = 6) are (Table 1): 

f l  = (1 - R2)/4 (for A'B1B1) 

f2 = (1 + R 2 - R)/2 (for A.B~B2) 

c = (2R - R2)/4 (for A'B2 B2) J3 

fa = Re/4 (for aaB1B1) 

fs = (R - R;)/2 (for aaB1B:) and 

.f6 = (i - 2R + R2)/4 (for aaB2B2). 

The observed absolute frequencies are z~, i =  1,2, 
. . . .  6, with z, + z z + z 3 + z 4 + z s + z 6 = N = number  of 
tested individuals. The likelihood function L(R) is 

L(R) = R z~ + z~ + =~(t  - R) z '+ z~ + =o 

.(1 +R)Z~(2--R)Z3(1 + R  2 --R)Z~.2 z~+z'-2N. (12) 
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With L(0.50) = 2 ~a + ~  - 4 N .  3 , ,  +~ +~ 
LOD SCORE: 

one obtains for the 

V 
Z(R) = l o g | R  ='+~+2~- .(1 - R) ~*+~ +2~~ 

�9 ( I + R ) ~ ( 2 - R ) ~ ( I + R 2 - R ) Z ~ . 3 = , + = ~ + =  ~ . (13) 

The maximum likelihood estimate /~ is found by 
setting to zero the first derivative of the LOD SCORE 
and verifying that this maximizes the LOD SCORE. 
One then obtains the condition: 

zz(2/  - 1) 2z3(1 

(1  - +  q(2 - R) 
2z 4 zs(1-2/~)  

2fiZ 1 2Z 6 
- -  1 - -  R'~ + ~ - ' R '  (14)  

Again, the condition for significant linkage 
Z(R) > {linkage threshold} must be transformed into an 
inequality for N by replacing the frequencies zi, 
i = 1, 2 . . . .  6, by expressions depending on R and N. But, 
there are only two equations available: extreme condi- 
tion (14) and z 1 + Z 2 -'~ Z 3 -~ Z 4 @ Z 5 "-~ Z 6 ~--- N .  To obtain 
additional equations, we replace four of the six absolute 
frequencies z i by their theoretical frequencies Nfe cal- 
culated at R = R (for each choice of these four replace- 
ments one obtains the same results). By this procedure, 
lower bounds of the necessary numbers of tested plants 
can be easily calculated. One obtains: 

E ( N , / ~ )  --- N log  i /~4-~-  R2.(1 - / ~ ) 3 -  2R-  R2 

"(1 +/~)1-R2"(2-/~)2R-R2(1 +/~z --/~)2(R2-R + 1"2256 ] 

linkage } 
>-- [threshold " (15) 

Some numerical results are presented in Table 2. These 
results need no further discussion and interpretation. 
They are highly self-explanatory. 

The necessary sample sizes are lowest for the sub- 
population of susceptible individuals and largest for the 
sub-population of resistant individuals, while the 
sample sizes for the complete F2 are intermediate 
(Table 2). 

With regard to their practical relevance, the numeri- 
cal sample sizes from Table 2 may be criticised since they 
have been calculated for the special case R = R. But, a 
generalization and improvement can be obtained by the 
construction of a two-sided central c~%-confidence 
interval on the true recombination fraction R: since/~ 
is asymptotically normally distributed and unbiased 

(Ott 1991), the lower ( U 1 )  and upper (U2) limits of this 
confidence interval are R + ul - ~/2 x / -V~ where Ul - ~/2 is 
the(1 - ~/2)-quantile from the normal distribution and 
V(R) denotes the variance of/~ which depends on R and 
N: 

= R (1 - R) 
2N (16) 

(for the sub-population of susceptible individuals). 

3 (17) 

N + 2 R - R  2 I + R  2 - R  

(for the sub-population of resistant individuals). 

1 

N q 2 R -  R 2 } 2 R -  2 R  2 2 q- 2 R  2 - 2R 

(is) 

(for the complete F2). 
The limits of the confidence interval depend on R, c~ 

and N: U 1 = U 1 (N, ~, R) and U 2 = U 2 (N, ~, R). For the 
true recombination fraction R and a required confidence 
level ~, the confidence interval depends only on N. 

Replacement of/~ in (7), (11), and (15), respectively, by 
U 1 and by U 2 leads to inequalities which cannot be 
solved analytically for N. Lower bounds for necessary 
sample sizes must, therefore, be derived by numerical 
methods, i.e., the solution is the smallest integer N with 
F(N,  U1) >_ {linkage threshold} and F(N,  U2) > {link- 
age threshold}. 

Numerical example 

(sub-population of susceptible individuals; R = 0.25; 
linkage threshold = 3.0; confidence level ~ = 0.10). The 
lower (U1) and upper (U2) limits of the confidence 
interval are 

- R )  
U1. a = R + 1.64 X/ 2N (19) 

By (7) one obtains 

3 
N > 21og[_2uiUl( 1 _ U1)1 _u1. ] -~-L(N) 

(20) 

3 
N _> 2 log[2U2V~(1 _ U2)~-v~] =fa(N) �9 (21) 

The smallest integer N which fulfills both inequalities 
(20) and (21) can be derived from Fig. 1. 
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Fig. 1 Determination of necessary sample sizes by numerical 
methods [smallest N with N >_fl(N) and N _>f2(N)] (see text) 

Table3 Necessary samplesizesfor different values of R and v 

R 0.05 0.15 0.25 0.35 

Susceptibleindividuals 
0.05 7-8 13-14 24-30 61-98 
0.10 7-8 12 15 22-33 50-130 
0.20 7-8 11-16 18 43 35-268 
0.30 7-8 10-18 16-56 26-883 

Resistantindividuals 
0.05 38-40 80-90 178-227 503-826 
0.10 37-40 ~75-95 159-258 404-1112 
0.20 36-42 67-108 127 338 272-2369 
0.30 34-44 59-122 103 455 192-8182 

Susceptible and ~sistantindividuals 
0.05 18-19 34-37 69-85 178 288 
0.10 18-19 32-39 62-96 145-386 
0.20 17-20 29-44 51 123 100-811 
0.30 17-20 26-49 42-162 53-2609 

For this numerical example, the necessary sample 
size is N = 52. The previous result for R = ~ ,  i.e., without 
allowing any stochastic variation of R, was N = 27 
(Table 2). A consideration of the variability of /~ in- 

creases the necessary sample size considerably. This 
procedure, however, can only be applied for sufficiently 
large sample sizes so that the approximations based on 
the normal distribution are reliably valid. 

For small samples [with unknown variance V(/~)] an 
application of the limits R __+ ~ with x f ~ / ~ ) =  vR 
and v = coefficient of variation for R, i.e., U t = (1 - v)R 
and U 2 = (1 + v)R, may provide some rough numerical 
results on necessary sample sizes for linkage detection. 
This approach presumes unbiasedness of R and inde- 
pendence of v on the sample size N. Maximum-likeli- 
hood estimates, however, are often biased. In linkage 
analysis, the statistical bias of the recombination frac- 
tion has not reveived much attention. One reason may 
be the fact that this bias tends to vanish with increasing 
sample size. Some numerical results for the latter ap- 
proach with limits Ut = (1 - v)R and U 2 = (1 + v)R are 
presented in Table 3. For varying R within the limits 
from Ut up to U2, the range of necessary sample sizes 
increases, of course, with increasing v and with increas- 
ing R. 

An essential improvement and generalization of the 
previous approaches can be attained if the exact dis- 
tribution of R for small sample sizes N is known. For 
each sample size, exact confidence intervals, bias, vari- 
ance etc.,can be calculated exactly. These exact distribu- 
tions of R will be derived by simulation. 
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